Y. Sun, V. Morgunov, A.G. Chmielewski

MODELING STUDY OF NOX REMOVAL IN FLUE GAS IN THE PRESENCE OF C_2H_6 UNDER ELECTRON BEAM IRRADIATION

Electron Beam Flue Gas Treatment (EBFGT) technology has demonstrated its efficiency in purification flue gases from SO_x and NO_x for coal and oil fired boilers [1]. High removal efficiency of SO₂ (> 95%) and NO_x(>70%) has been demonstrated and industrial plant applying this process has been built in Poland [2]. However SO₂ removal from off-gases by using EB is relatively easy, but NO_x removal needs higher energy consumption. It demands a new method to remove NOx with lower energy consumption. Our previous work showed that NO_x removal efficiency was improved with the presence of alcohol [3]. In this work we theoretically studied NO_x removal with presence of C_2H_6 with the aid of computer simulation.

The computer simulation of NO_x removal in flue gas under EB-irradiation was carried out by using selfdeveloped computer code "ELO", GEAR method was used. 883 reactions involving 94 species were considered for NO_x+ (air +CO₂ + H₂O) + C₂H₆ (0 – 400 ppm) system, and 998 reactions involving 137 species were considered for NO_x + (air +CO₂ + H₂O) + 400 ppm C₂H₆ + 700 ppm SO₂. Five main groups of reactions were included, the rate constants of reactions were mostly taken from the literatures [4, 5, 6]. The units of rate constant are /s, m³/mole s and m⁶/mole² s for first-, second and third- order reactions, respectively.

When fast electrons from electron beams are absorbed in the carrier gas, they cause ionization and excitation process of the nitrogen, CO_2 and H_2O molecules in the carrier gas. Primary species and secondary electrons are formed.

The generation of active species under the electron beam is described by [6]: $\frac{dn_i}{dt} = G_{n_i} \dot{D} x_i \rho,$ (1)

where $_{n_i}$ - concentration of i-th component, mole/m³; $_{G_{n_i}}$ - radiation yield of the i-th component of the gas, mole/J; $_{x_i}$ - mole fraction of i-th component; \dot{D} - dose rate, J/(kg·s); $_{\rho}$ - gas density, kg/m³.

Kinetics of chemical reactions of species formed during the gas irradiation with molecules of the gas medium and with one another is described by differential equations:

 $\frac{dn_i}{dt} = n_i \sum_n k_i^{(n)} \prod_{k=1}^n n_k$ For given initial concentrations: $n_i(0) = n_{i0}$ (2)
(3)

where, n_i - concentration of i-th component, mole/m³; $k_i^{(n)}$ - the rate constant for n-order chemical reaction between the i-th and the k-components of gas; n_k - concentration of k-th component, n_{i0} - the initial concentration of the i-th component. Calculations were made in the following conditions:

• NO = 494 ppm, NO₂ = 38 ppm, CO₂ = 7 %, H₂O = 10-11 % (v/v), O₂ = 10 %, N₂ as balance, T = 70 0 C (no any additives);

• NO = 494 ppm, NO₂ = 38 ppm, CO₂ = 7 %, H₂O = 10-11 % (v/v), O₂ = 10 %, N₂ as balance, T = 7 0 0 C (with presence of 100 ppm and 400 ppm C₂H₆, respectively);

• NO = 494 ppm, NO₂ = 38 ppm, CO₂ = 7 %, H₂O = 10-11 % (v/v), O₂ = 10 %, N₂ as balance, T = 70 0 C (with presence of 700 ppm SO₂ and 400 ppm C₂H₆).

Fig.1 presents calculation and experimental results of NO_x removal in flue gas vs. dose under EBirradiation. Calculation results agree with the experimental results [3] to some extent. NO_x removal under influence of additives is presented in Fig.2. It is seen that NO_x removal efficiency is slightly improved with the presence of C_2H_6 . The key reactions are listed below:

$OH + C_2H_6 = C_2H_5 \bullet + H_2O$		(R1)
$O_2 + C_2 H_5 \bullet = C_2 H_5 O_2 \bullet$		(R2)
$2C_2H_5O_2\bullet = 2C_2H_5O\bullet + O_2$		(R3)
$C_2H_5O_2\bullet + NO = C_2H_5O\bullet + NO_2$	(R4)	
$C_2H_5O_2\bullet + NO + M = C_2H_5ONO_2 + M$	(R5)	
$C_2H_5O_2\bullet + NO_2 + M = C_2H_5O_2NO_2 + M$	(R6)	
$NO_2 + OH + M = HNO_3 + M$		(R7)
	1 1 1 0 1	

The oxidation–reduction cycle between NO_2 and NO is toward the oxidation path and an increase in NO_x removal efficiency is favored.

From calculation results, following conclusions are drawn:

1. Removal efficiency of NO_x is increased by 3 % at a dose of 10.9 kGy with the presence of C_2H_6 when concentration of C_2H_6 is in the range of 100 ppm to 400 ppm.

2. Removal efficiency of NO_x is decreased by 23.84 % at a dose of 10.9 kGy with the presence of

400 ppm C₂H₆ and 700 ppm SO₂. SO₂ presence decreases removal efficiency of NO_x when ammonia is not added.

References

[1]. Basfar A.A. et al: Fuel, <u>87</u>, 8-9, 1446-1452 (2008).

[2]. Chmielewski A.G. et al.: Radiat. Phys. Chem. 71, 1-2, 439-442 (2004).

[3]. Chmielewski A.G. et al.: Radiat. Phys. Chem. <u>65</u>, 4-5, 397-403 (2002).

[4]. Albritton, DL: At. Data Nucl. Data, 22, 1-101(1978)

[5]. http://kinetics.nist.gov/kinetics/index.jsp

[6]. Mätzing H.: Advances in Chemical Physics Volume LXXX, John Wiley & Sons, Inc., New Jersey 1991, 315-402.

List title of figures

Fig.1 Experimental and calculation results of NOx removal from flue gas vs. dose under EB irradiation

Fig.2 Experimental and calculation results of NOx removal from flue gas vs. dose under EB irradiation with/without the presence of additives

